Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-[(3,4-Dichlorophenyl)aminocarbonyl]propionic acid monohydrate

B. Thimme Gowda, ${ }^{\text {a* }}$ Sabine Foro, ${ }^{\text {b }}$ B. S. Saraswathi ${ }^{\mathbf{a}}$ and Hartmut Fuess ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ${ }^{\mathbf{b}}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
Correspondence e-mail: gowdabt@yahoo.com
Received 24 June 2009; accepted 25 June 2009
Key indicators: single-crystal X-ray study; $T=299 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.083 ; \omega R$ factor $=0.212$; data-to-parameter ratio $=12.7$.

In the crystal structure of the title compound, $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{3} \cdot-$ $\mathrm{H}_{2} \mathrm{O}$, the conformations of the amide O atom and the carbonyl O atom of the acid segment are anti to the H atoms of adjacent $-\mathrm{CH}_{2}$ groups. In the crystal, the molecules are linked into a three-dimensional network through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds.

Related literature

For related structures, see: Gowda et al. (2009a,b,c). For hydrogen bonds involving carboxylic acids, see: Jagannathan et al. (1994); Leiserowitz (1976). For the modeling of water H atoms, see: Nardelli (1999).

Experimental

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$
$V=1194.0(2) \AA^{3}$
$M_{r}=280.10$
Monoclinic, $P 2_{1} / c$
$Z=4$
$\mathrm{Cu} K \alpha$ radiation
$a=9.5634$ (9) А
$\mu=4.95 \mathrm{~mm}^{-1}$
$b=7.4527$ (7) \AA
$T=299 \mathrm{~K}$
$0.55 \times 0.50 \times 0.40 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.098, T_{\text {max }}=0.138$
2508 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.083$
$w R\left(F^{2}\right)=0.212$
$S=1.08$
2129 reflections
167 parameters
5 restraints

2129 independent reflections 2052 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.072$
3 standard reflections frequency: 120 min intensity decay: 1.0%

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.92 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\min }=-0.69 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{O} \cdots \mathrm{O}^{4}$	0.88 (3)	1.79 (3)	2.672 (4)	177 (5)
$\mathrm{N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 3^{\text {ii }}$	0.84 (3)	2.11 (3)	2.941 (4)	168 (4)
$\mathrm{O} 4-\mathrm{H} 41 \cdots \mathrm{O} 1^{\text {iii }}$	0.82 (3)	2.11 (4)	2.894 (4)	162 (5)
$\mathrm{O} 4-\mathrm{H} 42 \cdots \mathrm{O} 1^{\text {iv }}$	0.84 (3)	2.09 (3)	2.881 (4)	156 (5)

Symmetry codes: (i) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x, y+\frac{1}{2},-z+\frac{1}{2}$; (iv) $x, y+1, z$.

Data collection: CAD-4-PC (Enraf-Nonius, 1996); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe \& Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2838).

References

Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands. Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. \& Fuess, H. (2009a). Acta Cryst. E65, o399.
Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. \& Fuess, H. (2009b). Acta Cryst. E65, 0466.
Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. \& Fuess, H. (2009c). Acta Cryst. E65, o873.
Jagannathan, N. R., Rajan, S. S. \& Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75-78.
Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.
Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stoe \& Cie (1987). REDU4. Stoe \& Cie GmbH, Darmstadt, Germany.

supplementary materials

Acta Cryst. (2009). E65, o1722 [doi:10.1107/S1600536809024519]

3-[(3,4-Dichlorophenyl)aminocarbonyl]propionic acid monohydrate

B. T. Gowda, S. Foro, B. S. Saraswathi and H. Fuess

Comment

As a part of studying the effect of ring and side chain substitutions on the structures of aromatic amides (Gowda et al., $2009 a, b, c$), the crystal structure of N-(3,4-dichlorophenyl)succinamic acid monohydrate (I), systematic name: 3-[(3,4-di-chloro)-aminocarbonyl]propionic acid monohydrate has been determined. The conformation of the $\mathrm{N}-\mathrm{H}$ bond is anti to both the 3-chloro substituent in the aromatic ring and the $\mathrm{C}=\mathrm{O}$ bond in the amide segment of the structure. Further, the amide O atom and the carbonyl O atom of the acid segment are anti to each other and are also anti to H atoms attached to the adjacent C atoms (Fig.1). Further, $\mathrm{C}=\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$ bonds of the acid group are syn to each other, contrary to the anti position observed in 3-[(3,5-dichloro)-aminocarbonyl]propionic acid (Gowda et al., 2009c). The observed anti position with the latter may be due to the hydrogen bond donated to the amide carbonyl group by the acid segment, which is prevented in the present structure due to the H -bonding effect of hydration. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds link the molecules into a three-dimensional network (Table 1 and Fig.2).

The modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976). The packing of molecules involving dimeric hydrogen-bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed (Jagannathan et al., 1994).

Experimental

The solution of succinic anhydride $(0.02 \mathrm{~mol})$ in toluene $(25 \mathrm{ml})$ was treated dropwise with the solution of 3,4-dichloroaniline $(0.02 \mathrm{~mol})$ also in toluene $(20 \mathrm{ml})$ with constant stirring. The resulting mixture was stirred for about 1 h and set aside for an additional hour at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3,4-dichloroaniline. The resultant solid N-(3,4-dichlorophenyl)-succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared spectra. Single crystals used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation at room temperature.

Refinement

The O-bound and N -bound H atoms were located in a difference map. The positional parameters of the N -bound H atom were refined with $\mathrm{N}-\mathrm{H}=0.86$ (4) \AA and those of the O-bound (hydroxyl) H atom were refined with O-H distance restrained to 0.82 (4) \AA. The positions of water H atoms were refined with restrained geometry (Nardelli, 1999) viz. O-H $=0.85$ (4) \AA and $\mathrm{H} \cdots \mathrm{H}=1.365(4) \AA$. The other H atoms were positioned with idealized geometry using a riding model [C-H = 0.93-0.97 \AA A. The isotropic displacement parameters of all H atoms were set to 1.2 times of the U_{eq} of the parent atom.

supplementary materials

Figures

Fig. 1. The molecular structure of the title compound, showing the atom labelling and the displacement ellipsoids are at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2. The crystal packing of the title compound, with hydrogen bonds shown as dashed lines.

3-[(3,4-Dichlorophenyl)aminocarbonyl]propionic acid monohydrate

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=280.10$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=9.5634$ (9) \AA
$b=7.4527$ (7) \AA
$c=17.292(2) \AA$
$\beta=104.35$ (2) ${ }^{\circ}$
$V=1194.0(2) \AA^{3}$
$Z=4$
$F_{000}=576$
$D_{\mathrm{x}}=1.558 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54180 \AA$
Cell parameters from 25 reflections
$\theta=4.8-20.7^{\circ}$
$\mu=4.95 \mathrm{~mm}^{-1}$
$T=299 \mathrm{~K}$
Prism, colourless
$0.55 \times 0.50 \times 0.40 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=299 \mathrm{~K}$
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.098, T_{\text {max }}=0.138$
2508 measured reflections
2129 independent reflections
$R_{\text {int }}=0.072$
$\theta_{\text {max }}=67.0^{\circ}$
$\theta_{\text {min }}=4.8^{\circ}$
$h=-11 \rightarrow 1$
$k=-8 \rightarrow 0$
$l=-19 \rightarrow 20$
3 standard reflections
every 120 min
intensity decay: 1.0%
2052 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

Least-squares matrix: full

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.083$
$w R\left(F^{2}\right)=0.212$
$S=1.08$
2129 reflections
167 parameters
5 restraints

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1684 P)^{2}+0.6399 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.003$
$\Delta \rho_{\max }=0.92$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.69$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.014 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
C11	$-0.35278(8)$	$0.10598(12)$	$0.56662(5)$	$0.0441(4)$
C12	$-0.33021(8)$	$0.03602(12)$	$0.38996(4)$	$0.0449(4)$
O1	$0.1190(2)$	$0.2952(3)$	$0.33626(13)$	$0.0417(6)$
O2	$0.5845(3)$	$0.4233(4)$	$0.26373(15)$	$0.0534(7)$
H2O	$0.674(4)$	$0.448(6)$	$0.262(3)$	0.064^{*}
O3	$0.6264(3)$	$0.5188(4)$	$0.38871(15)$	$0.0543(7)$
N1	$0.1755(3)$	$0.3197(3)$	$0.47092(15)$	$0.0331(6)$
H1N	$0.240(4)$	$0.353(5)$	$0.511(2)$	0.040^{*}
C1	$0.0452(3)$	$0.2667(4)$	$0.48923(17)$	$0.0301(7)$
C2	$0.0368(3)$	$0.2923(4)$	$0.56697(18)$	$0.0345(7)$
H2	0.1138	0.3446	0.6036	0.041^{*}
C3	$-0.0840(3)$	$0.2416(4)$	$0.59077(18)$	$0.0367(7)$
H3	-0.0879	0.2582	0.6435	0.044^{*}
C4	$-0.2005(3)$	$0.1652(4)$	$0.53626(17)$	$0.0319(7)$
C5	$-0.1905(3)$	$0.1364(4)$	$0.45895(17)$	$0.0315(7)$
C6	$-0.0693(3)$	$0.1877(4)$	$0.43433(17)$	$0.0325(7)$
H6	-0.0646	0.1696	0.3818	0.039^{*}
C7	$0.2060(3)$	$0.3302(4)$	$0.39971(17)$	$0.0311(7)$
C8	$0.3601(3)$	$0.3889(4)$	$0.40446(18)$	$0.0360(7)$
H8A	0.3773	0.5034	0.4319	0.043^{*}
H8B	0.4260	0.3022	0.4359	0.043^{*}

C9	$0.3923(4)$	$0.4068(7)$	$0.3247(2)$	$0.0566(11)$
H9A	0.3294	0.4973	0.2939	0.068^{*}
H9B	0.3717	0.2938	0.2963	0.068^{*}
C10	$0.5465(3)$	$0.4577(5)$	$0.33053(19)$	$0.0400(8)$
O4	$0.1421(3)$	$0.9875(5)$	$0.23932(16)$	$0.0570(8)$
H41	$0.070(4)$	$0.945(6)$	$0.209(3)$	0.068^{*}
H42	$0.116(5)$	$1.059(6)$	$0.271(3)$	0.068^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0340(5)$	$0.0587(6)$	$0.0425(6)$	$-0.0077(3)$	$0.0149(4)$	$0.0020(3)$
C12	$0.0329(5)$	$0.0645(7)$	$0.0332(6)$	$-0.0134(3)$	$0.0003(4)$	$-0.0034(3)$
O1	$0.0306(11)$	$0.0668(15)$	$0.0259(11)$	$-0.0049(10)$	$0.0035(9)$	$-0.0020(9)$
O2	$0.0391(13)$	$0.0936(19)$	$0.0297(13)$	$-0.0109(13)$	$0.0123(10)$	$0.0014(12)$
O3	$0.0375(13)$	$0.0839(19)$	$0.0395(14)$	$-0.0159(13)$	$0.0058(11)$	$-0.0119(13)$
N1	$0.0270(12)$	$0.0455(14)$	$0.0256(13)$	$-0.0077(10)$	$0.0045(10)$	$-0.0018(10)$
C1	$0.0263(13)$	$0.0343(14)$	$0.0291(15)$	$0.0006(10)$	$0.0057(11)$	$0.0034(11)$
C2	$0.0326(15)$	$0.0411(15)$	$0.0279(15)$	$-0.0056(12)$	$0.0039(12)$	$-0.0048(11)$
C3	$0.0392(16)$	$0.0438(16)$	$0.0281(15)$	$-0.0024(12)$	$0.0103(12)$	$-0.0045(12)$
C4	$0.0273(14)$	$0.0380(14)$	$0.0310(14)$	$-0.0010(11)$	$0.0085(11)$	$0.0037(11)$
C5	$0.0265(14)$	$0.0372(14)$	$0.0272(14)$	$-0.0027(11)$	$-0.0001(11)$	$0.0022(11)$
C6	$0.0313(14)$	$0.0417(16)$	$0.0237(14)$	$-0.0022(11)$	$0.0055(11)$	$0.0017(11)$
C7	$0.0255(14)$	$0.0359(14)$	$0.0301(14)$	$0.0002(11)$	$0.0039(11)$	$0.0017(11)$
C8	$0.0299(15)$	$0.0489(17)$	$0.0288(16)$	$-0.0071(12)$	$0.0063(12)$	$0.0003(12)$
C9	$0.0322(18)$	$0.110(3)$	$0.0274(17)$	$-0.0167(18)$	$0.0062(13)$	$-0.0016(17)$
C10	$0.0315(16)$	$0.060(2)$	$0.0281(15)$	$-0.0061(13)$	$0.0071(12)$	$0.0040(13)$
O4	$0.0364(13)$	$0.094(2)$	$0.0387(14)$	$-0.0004(13)$	$0.0064(11)$	$-0.0163(14)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 11-\mathrm{C} 4$	$1.723(3)$
$\mathrm{C} 2-\mathrm{C} 5$	$1.726(3)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.229(4)$
$\mathrm{O} 2-\mathrm{C} 10$	$1.319(4)$
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{O}$	$0.88(3)$
$\mathrm{O} 3-\mathrm{C} 10$	$1.193(4)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.337(4)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.415(4)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$0.84(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.380(4)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.390(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.372(4)$
$\mathrm{C} 2-\mathrm{H} 2$	0.93
$\mathrm{C} 3-\mathrm{C} 4$	$1.390(4)$
$\mathrm{C} 10-\mathrm{O} 2-\mathrm{H} 2 \mathrm{O}$	$118(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1$	$128.9(2)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$117(3)$

$\mathrm{C} 3-\mathrm{H} 3$	0.93
$\mathrm{C} 4-\mathrm{C} 5$	$1.381(4)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.384(4)$
$\mathrm{C} 6-\mathrm{H} 6$	0.93
C7-C8	$1.520(4)$
C8-C9	$1.492(5)$
C8-H8A	0.97
C8-H8B	0.97
C9—C10	$1.501(4)$
C9—H9A	0.97
C9—H9B	0.97
O4-H41	$0.82(3)$
O4-H42	$0.84(3)$
C1-C6-H6	120.5
O1-C7-N1	$123.8(3)$
O1-C7-C8	$122.8(3)$

sup-4

supplementary materials

C1-N1-H1N	114 (3)	N1-C7-C8	113.4 (3)
C2-C1-C6	119.8 (3)	C9-C8-C7	113.3 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	116.5 (3)	C9-C8-H8A	108.9
C6-C1-N1	123.6 (3)	C7-C8-H8A	108.9
C3-C2-C1	120.7 (3)	C9-C8-H8B	108.9
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.6	C7-C8-H8B	108.9
C1-C2-H2	119.6	H8A-C8-H8B	107.7
C2-C3-C4	120.2 (3)	C8-C9-C10	112.6 (3)
C2-C3-H3	119.9	C8-C9-H9A	109.1
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.9	C10-C9-H9A	109.1
C5-C4-C3	118.9 (3)	C8-C9-H9B	109.1
C5-C4-Cl1	121.4 (2)	C10-C9-H9B	109.1
C3-C4-C11	119.6 (2)	H9A-C9-H9B	107.8
C4-C5-C6	121.3 (3)	$\mathrm{O} 3-\mathrm{C} 10-\mathrm{O} 2$	123.7 (3)
C4-C5-Cl2	120.6 (2)	O3-C10-C9	124.5 (3)
C6-C5- Cl 2	118.1 (2)	O2-C10-C9	111.8 (3)
C5-C6-C1	119.0 (3)	H41-O4-H42	109 (4)
C5-C6-H6	120.5		
C7-N1-C1-C2	-171.2 (3)	C4-C5-C6-C1	1.2 (4)
C7-N1-C1-C6	10.6 (5)	C12-C5-C6-C1	-179.2 (2)
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-0.3 (5)	C2-C1-C6-C5	0.1 (4)
N1-C1-C2-C3	-178.6 (3)	N1-C1-C6-C5	178.3 (3)
C1-C2-C3-C4	-0.8(5)	C1-N1-C7-O1	1.1 (5)
C2-C3-C4-C5	2.1 (5)	C1-N1-C7-C8	-178.6 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Cl1}$	-178.8 (3)	O1-C7-C8-C9	2.4 (5)
C3-C4-C5-C6	-2.3 (4)	N1-C7-C8-C9	-177.9 (3)
C11-C4-C5-C6	178.6 (2)	C7-C8-C9-C10	-177.7 (3)
C3-C4-C5-Cl2	178.1 (2)	C8-C9-C10-O3	-16.9 (6)
C11-C4-C5-C12	-1.0 (4)	C8-C9-C10-O2	161.8 (3)

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 \mathrm{O} \cdots \mathrm{O} 4^{\mathrm{i}}$	$0.88(3)$	$1.79(3)$	$2.672(4)$	$177(5)$
$\mathrm{N} 1 — \mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O} 3^{\mathrm{ii}}$	$0.84(3)$	$2.11(3)$	$2.941(4)$	$168(4)$
$\mathrm{O} 4 — \mathrm{H} 41 \cdots 1^{\mathrm{iii}}$	$0.82(3)$	$2.11(4)$	$2.894(4)$	$162(5)$
$\mathrm{O} 4 — \mathrm{H} 42 \cdots \mathrm{O}^{\mathrm{iv}}$	$0.84(3)$	$2.09(3)$	$2.881(4)$	$156(5)$

Symmetry codes: (i) $-x+1, y-1 / 2,-z+1 / 2$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x, y+1 / 2,-z+1 / 2$; (iv) $x, y+1, z$.

supplementary materials

Fig. 1

Fig. 2

